
Preventing Http Session Fixation Attacks

Armando Romeo*

©HackersCenter
http://www.hackerscenter.com

18/12/05

Permission to make digital or hard copies of all or part of this work for personal use is
granted without fee provided that copies are not made for profit or commercial advantage
and that copies bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee.
Copyright 2005 © Obsidis n°1 22/12/2005

* zinho-nospam@hackerscenter.com

1

http://www.hackerscenter.com/

1 Introduction

In this paper I will try to explain, from a web
developer point of view, the best practices to
take to prevent one of the most powerful but
yet least known attacks on http sessions.

2 SESSION FIXATION

2.1 Session fixation overview
Before demonstrating the techniques to use to
be secure from such attacks, let's understand
how session fixation attacks are held and
what a malicious user needs to mount them.

 The real problem with both session hijacking
and session fixation attacks are the way http
protocol handles connection state: to be more
specific we must say that HTTP is a
steateless protocol, so it doesn't take care of
the state between subsequent requests from
an user and it doesn't care about "user
session" at all.

 User sessions is a concept introduced with
modern web site applications/web servers
due to the need of authenticating and
identifying an user keeping his information
and (sensible) data from page to page under
the same website.

 While session hijacking is mounted by
stealing a valid open session id, session
fixation attacks are mounted by forging a
new valid "trap" session to be used by the
victim. Victim will then login on the target
server using this trap session, known by the
attacker, so that the attacker won't have to
guess/bruteforce/steal the session id.

2.2 Session id through URL or
Session Cookies
Keeping up the connection state with the web
server means exchanging session id between
client and server at each request: at first,
session id is generated from the web server.
Client, in order to be recognized, will have to
send the same session id at each subsequent

request. There are two ways to exchange
session id's between client and server:
session cookies and url.

 Although cookie offer a greater security
they are just a step away from being used to
mount a session fixation attack. In case the
web application developer irresponsibly
chose to retrieve/provide session id's by
URL (very common nowadays) attacker will
have to trick victim into just clicking a
forged (maybe hidden) url.

 In case the developer chose the cookie way,
attacker will have to successfully install a
valid session cookie on victim's machine
with his trap session. Even if this is a
mitigating factor, it doesn't solve the
problem at all.

 How to install cookies through XSS or
server side scripts is not the purpose of this
paper, but let's assume that installing this
cookie won't represent a problem for the
able and (relatively) skilled attacker.

2.3 Permissive and strict
environments
According to the environment your web
application is running on, there are different
policies with which sessions are handled.

 As I will demonstrate later on, the
difference between them is little and they're
meaningless under a security point of view.

 Permissive systems like JRUN accept any
session id issued by the client without
checking if the session id is a valid one or it
has been previously generated by the web
server. This means that attacker can use a
completely random id.

 For example:
"target.com?JSESSIONID=66666666" is a
valid id, even if it was not generated by the
server.

 This simplifies attacker efforts of grabbing
a valid id to be used as trap session.

 Strict systems like ASP are again just one

2

security step far from our goal: they accept
only server generated id's. This means that
attacker must first retrieve a valid id from the
target site.

 Many websites generate session id's before
user authentication. This behaviour is easy to
recognize because, urls or links are already
fed with a session id or session cookies are
set upon site entrance. Although this may not
seem a bad practice, in this case will shorten
and lighten the attackers efforts to forge a
trap session. In my experience this is not
uncommon, and it is used by many big e-
Commerce websites as well.

 If this is not the case, our malicious user will
just have to register an account on the target
web site in order to have a fully valid and
open session id to be used as trap for the
victim.

 As one can easily understand there's not big
difference between a permissive or a strict
server: while in the first case forging a
session id is completely stealth, the second
one probably requires the attaker to have
some skills into covering his tracks while
registering on the target machine and logging
in to retrieve a valid id.

 Due to the stealthness of the whole attack
(that will result for the attacker to gain
control over victim's account), target server
has no clue of what's going on, so it won't
even discriminate the attacker from the
victim.

 Once the attacker has gained a valid session
id, he will have to force the victim to log into
it.

 The attacker will have to eventually keep the
trap session alive while waiting for the victim
to log into. This is where a low absolute
session timeout value would restrict the
chances for the malicious user to succeed in
his attack.

3 Common practices to prevent
session fixation
Secure programming practices that generally
decrease the chances of a successfull attack

are almost all about how tight the login
policy is. Most of the session id's are
generated at login time and regenerating a
session id immediately after a successful
login could be a good idea.

3.1 Regenerating session in
PHP
Php offers a really comfortable functions to
generate a new session id:
session_regenerate_id();

 Web developers using php<4.3.3 must set
the session cookie manually to the new
session id: any other browser instance of the
same site will result into using the old
session id!

 If the old session is not destroyed the victim
will still have the old session id open.

 For the versions 4.3.2-3 this snippet from
Fou-Lu from codingforums.com will solve
the problem:

<?php

error_reporting(E_ALL);

ini_set('session.use_cookies', '1');

ini_set('session.use_only_cookies',
'1');session_start();

$oldsession = session_id();

session_regenerate_id();

$newsession = session_id();

session_id($oldsession);

session_destroy();

$old_session = $_SESSION;

session_id($newsession);

session_start();

$_SESSION = $old_session;

setcookie(session_name(), session_id(), NULL,
'/');

?>

 This poses to our attention another no less

3

dangerous problem: open session id's into
http_referer urls.

 Any web site's log file keeps information
about visitors behaviour including where
they are coming from (http_referer).

 If a user logs into the target server getting a
new session id generated for him and his old
session is not closed/cookie destroyed, when
leaving the target site, he will leave the open
session in the new site log file!

 This is why users should always use the
logout feature and web developers should
always keep one and only one session id for
each user and keep it alive for as little time as
posible.

3.2 ASP
ASP language doesn't provide a "ready-to-
go" function to regenerate a new session id. It
offers only cookie based sessions so it makes
the job of the attacker a bit harder: he/she
will have to install a cookie instead of just
forcing the victim to click on a link.

 ASP web server generates a new key upon
each restart with which will encrypt the
session id and send it through a session
cookie to the requesting client. Consecutive
requests result into consecutive session id's
values (but encrypted into the cookie). While
this prevents from capturing valid cookies, it
doesn't prevent from session fixation.

 A valid session cookie with a valid open
fixed encrypted trap session can still be
injected on the victim machine.

 ASP server sends a different session id for
each different asp file request. When a value
is first stored in a session variable the session
becomes "fixed" for that user and will be
kept alive and equal for any further request.
This means that an attacker can recognize a
fixed request by giving a look at how the
session id changes into his session cookie:
the session is fixed and ready to be used as a
trap session as soon as it remains the same
for two consecutive requests. This

demonstrates that the attacker is not always
forced to login into the target server in order
to have a fixed session!

 To prevent such behaviour you can turn on
ASP buffering to prevent unnecessary
session cookies to be sent to the user and
avoid session to be used before user
authentication.

 An ASP based web application should use
one of the techniques we are going to see in
the next paragraphs.

4. General Techniques

4.1 "Mutex" - without overhead -
(prevents Session fixation and
hijacking under certain
circumstances)
The idea behind this kind of technique is to
create a mutual exclusion access on the same
session id between the attacker and the
victim. The exclusion is based upon IP
acknowledgement. Let's see how it is
implemented.

 Upon user authentication both a session
cookie and a session var are created. The
session var will store the logged in user's ip
address. So, this is what happen when an
attack is issued:

1. Attacker gains a trap session by
loggin into the target server.

2. A session variable is set to the ip of
the attacker.

3. Attacker makes the victim log in
with this trap session.

4. The session var is updated to the ip
value of the victim.

 For each page that need some privilege
level a check between
HTTP_REMOTE_ADDR and the session
var is done. If they match then access is
grant. This is a simple binding between
session id's and ip address.

4

 It should be considered that denying access
to the login page wether the two ip are
different could lead to a denial of service:
attacker could keep the connection alive and
the victim wouldn't be able to authenticate
himself as the login page redirects him to an
error page. Thus, the best action to take here
is always to allow for new logins and making
the ip check on the other pages.

 IP address is the only thing that makes us
recognize users uniquely. Unfortunately this
is not true in the case users are behind the
same public proxy. Mutex technique is
simple to implement, doesn't use any
database stored value for authentication but
still doesn't ensure an acceptable level of
security.

 Environments allowing random trap session
(not validated nor generated by the server)
like PHP, get more benefits from this
technique than any other: not only it ensures
a basic protection based on a bind between ip
and session id but it also prevents from
arbitrary chosen session id's. Checking for
the existence of the session var with the ip
address forces an attacker to log-in, in order
to have a valid session id.

 As long as the ip between attacker and
victim are not the same Mutex method works
fine also against a Session Hijacking attack.

4.2 "Mutex with token" - without
overhead - (prevents Session
fixation and Session hijacking)
Keeping the benefits of the Mutex method
we can develop a much more secure way to
handle sessions. This method requires users
to have both persistent and session cookies
enabled to work.

 The idea behind it is to bind ip with
something that only victim knows: password.

 Furthermore, this method is meant to avoid
database access for each page that would
represent an important issue into a large scale
web application.

 Once again, session starts at login time:

1. Attacker registers on target site and
logs-in to have a valid trap session.

2. A cookie value is set to md5
(password+ip). It is the so called
token.

3. A session var is initialized with the
password value.

4. Victim logs in into the trap session.

5. A new (different) token is generated
and sent to victim through cookie.
Here is the focal point: password
used to generate the token is not
taken from that in the session
var(attacker's password) but from the
victim login input.

6. Victim is now the master of the
session id. Attacker is no more able
to navigate as a logged in user on
target site.

 Each page will compare the token in the
cookie and the token created with the
password saved in the session var and the
remote address.

 In order to succeed, the attacker must:

1. Use the same ip of the victim.

2. Make the victim log into the trap
session.

3. Steal the cookie to the victim taking
advantage of some xss hole in the
target site

 It is easy to understand that with the use of
the token the probability of the attacker to
mount a successful session fixation attack
decreases drastically.

 If the attacker is capable of stealing victim's
cookie he wouldn't need to mount a session
fixation attack to break into victim account:
he/she could just steal an open session
cookie. So, making the assumption that
attacker can't steal victim cookie, can be the
best lightweight solution to session fixation.

 The use of the password as the seed for the
token can be replaced with the use of a

5

random value. This should be then crypted.
it has been demonstrated that in a number of
shopping carts scripts, the use of numeric
tokens can be easily guessed or bruteforced.
This is why I preferred to use a password+ip
to generate a token: in order to be guessed,
the attacker would need user ip and should
then bruteforce the password value that (if
the password is reasonably long, i.e. Longer
than 6 chars) in 99% of the cases can take
longer time than the session timeout length.

 The use of the password can also be
employed into other methods to avoid
hijacking, matching user password with the
token.

 To make the token even harder to be
guessed/cracked the use of a random string
can turn useful: Upon user login a random
case-sensitive alphanumeric value
(rand_string) is generated and stored into a
session var.

 The token will become now something like
this: md5 (password + rand_string + ip).
Even if the attacker knows victim's ip, it will
be much more time consuming to perform a
bruteforce and in any case nearly impossible
to reconstruct victim's password.

5. Conclusions
The responsibility of preventing problems
related to http session management is left to
web application developers.

 Some systems can be more secure than
others providing with easier and smarter
approaches to session id management.
However there is not a fully secure
environment where a http session is
protected without a careful analysis of the
risks with the consequent development
policies taken at designing time.

 Session fixation attacks are not common as
XSS or SQL injections are. As education to
security is more and more spread among
web developers, hackers will try to find new
less-known attacking techniques. Although
Http Session fixation is not new it is almost
unknown among developers and is getting
some success among hackers. This is why
Http Session fixation attacks should not be
underestimated.

6. Bibliography
I strongly recommend
http://www.acros.si/papers/session_fixation.pdf
to have a complete overview of how to mount a
session fixation attack.

6

	Preventing Http Session Fixation Attacks
	©HackersCenter
	1 Introduction
	2 SESSION FIXATION
	2.1 Session fixation overview
	2.2 Session id through URL or Session Cookies
	2.3 Permissive and strict environments

	3 Common practices to prevent session fixation
	3.1 Regenerating session in PHP
	3.2 ASP

	4. General Techniques
	4.1 "Mutex" - without overhead - (prevents Session fixation and hijacking under certain circumstances)
	4.2 "Mutex with token" - without overhead - (prevents Session fixation and Session hijacking)

	5. Conclusions
	6. Bibliography

